
Project: Otcom Token
Platform: Ethereum
Language: Solidity
Date: September 28th, 2024

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions …………………………………-…………………………………………...12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Otcom Token to perform the Security audit of the Otcom
Token smart contract code. The audit was performed using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on September 28th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The contract provided implements a custom ERC20 token called "Otcom" (OTOM) with

additional features such as liquidity provision, tax mechanisms, and trading restrictions.

Here's a summary of its key functionalities:

Key Features:
● Tax Mechanism:

○ A configurable tax mechanism with separate percentages for liquidity tax and

development tax.

○ The taxes are deducted during buy/sell transactions, collected in the

contract, and used for adding liquidity and funding the development wallet.

● Trading Restrictions:
○ Blacklist Protection: The contract has a feature to blacklist addresses for a

certain number of blocks after trading is enabled, primarily to combat bots.

○ Maximum Transaction Amount: A configurable limit on the maximum number

of tokens that can be transferred in a single transaction.

○ Trade Control: Trading can only be enabled by the owner of the contract.

● Liquidity Management:
○ The contract automatically manages liquidity by adding liquidity to a Uniswap

pair when a threshold is reached.

○ The `swapAndLiquify` function splits tokens, converts half to ETH, and adds

liquidity on Uniswap. It also transfers part of the collected ETH to the

development wallet.

● Token Transfers:
○ Standard ERC20 functionality with added mechanisms for tax deductions

during buys/sells.

○ Internal transfer function: Implements additional checks, including restrictions

on blacklisted addresses and trading status.

● Ownership & Configuration:
○ Only the owner can modify certain contract parameters, like the dev wallet,

tax percentages, maximum transaction amount, and blacklist settings.

The contract is designed to be used as a token with tax and liquidity management for

decentralized exchanges like Uniswap.

It can be suitable for projects aiming to ensure liquidity and development funding through

every transaction.

Audit scope

Name Code Review and Security Analysis Report
for Otcom Token Smart Contract

Platform Ethereum / Solidity

File OTCOMToken.sol

GitHub Commit Hash b2cbfd317b6b2182d817bf6b6b8bc8f0c05c0e4e

Updated GitHub Commit Hash 6eea7827826c9ff104e7ac0c5c63ee70f948686a

Audit Date September 28th, 2024

Revised Audit Date October 17th, 2024

https://github.com/Otcomgit/OTCOMToken/blob/main/OTCOMToken.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Token Details:
● Name: Otcom

● Symbol: OTOM

● Decimals: 18

● Total Supply: 10 million tokens

YES, This is valid.

Tax and Limits:
● Liquidity Tax: 1% (1000 basis points) for

liquidity purposes.

● Dev Tax: 1% (1000 basis points) for

development purposes.

● Tax Threshold: Minimum token amount

(10,000) required to trigger tax functions.

● Maximum Amount: Maximum buy/sell limit set

to 20,000 tokens.

● Number of Blocks For Blacklist: Restriction on

trades within a set number of blocks.

YES, This is valid.

The owner has several administrative functions:
● Enable trading.

● Set blacklist duration for sniper bots.

● Adjust maximum transaction limits.

● Update development wallet.

● Change tax thresholds and percentages.

● The current owner can transfer ownership of the

contract to a new account.

● Deleting ownership will leave the contract

without an owner, removing any owner-only

functionality.

YES, This is valid.
We suggest renouncing
ownership once the
ownership functions are not
needed. This is to make the
smart contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, Customer`s solidity-based smart contracts
are “secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 3 very low-level issues.
We confirm that all the issues are fixed.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 2%

Sell Tax 2%

Cannot Buy No

Cannot Sell No

Max Tax 2%

Modify Tax Yes

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Transaction amount? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the Otcom Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Otcom Token.

The Otcom Token team has not provided scenario and unit test scripts, which would help

to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given an Otcom Token smart contract code in the form of a GitHub weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://github.com/Otcomgit/OTCOMToken/blob/main/OTCOMToken.sol

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 burn write access only owner No Issue
8 _burn internal Passed No Issue
9 transfer write Passed No Issue
10 transferFrom write Passed No Issue
11 allowance read Passed No Issue
12 approve write Passed No Issue
13 _approve internal Passed No Issue
14 _spendAllowance internal Passed No Issue
15 _transferTokens internal Passed No Issue
16 setDevWallet external access only owner No Issue
17 setTaxPercentage external access only owner No Issue
18 setTaxThreshold external access only owner No Issue
19 recoverETHfromContract external - Removed
20 swapTokensForEth write Passed No Issue
21 swapAndLiquify internal Passed No Issue
22 addLiquidity write Passed No Issue
23 _transfer internal Passed No Issue
24 _calculateTax internal Passed No Issue
25 fallback external - Removed
26 receive external Passed No Issue
27 onlyOwner modifier Passed No Issue
28 owner read Passed No Issue
29 _checkOwner internal Passed No Issue
30 renounceOwnership write access only owner No Issue
31 transferOwnership write access only owner No Issue
32 _transferOwnership internal Passed No Issue
33 enableTrade write access only owner No Issue
34 setNumberOfBlocksForBlac

klist
external access only owner No Issue

35 setMaxAmount external access only owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:

Constructor parameter _devWallet requires validation before execution.

Resolution: We suggest using validation, like for numerical variables that should be

greater than 0, and for address-type check variables that are not addressed (0). For

percentage-type variables, values should have some range, like a minimum of 0 and a

maximum of 100.

Status: Fixed

(2) Duplicate events define:

Transfer and Approval events are defined twice.

Resolution: Please remove duplicate events defined.

Status: Fixed

(3) Set tax Percentage Limit:

The logic in the code is valid, as it correctly calculates the liquidityTaxPercentage and

devTaxPercentage based on the _taxPercentage. If the total tax is 100%, then the entire

amount will be distributed between these two taxes, leaving nothing for the buyer.

Resolution: It's important to note that setting the tax percentage to 100% might not be

desirable in most scenarios, as it effectively prevents buyers from acquiring tokens. It's

generally recommended to set a reasonable tax percentage that allows for both token

distribution and project funding.

Status: Fixed

Centralization

This smart contract has some functions that can only be executed by the Admin (Owner).

If the admin wallet's private key is compromised, then it usually creates trouble. The

following are Admin functions:

OTCOMToken.sol
● burn: Allows the contract owner to burn a specific amount of tokens from the caller's

address.

● enableTrade: Allows the contract owner to enable trading by setting the

`tradeOpen` flag to true.

● setNumberOfBlocksForBlacklist: Allows the contract owner to set the number of

blocks during which sniper bot protection is active.

● setMaxAmount: Allows the contract owner to set the maximum transaction amount.

● setDevWallet: Allows the contract owner to set a new development wallet address.

● setTaxPercentage: Allows the contract owner to set the total tax percentage for the

contract.

● setTaxThreshold: Allows the contract owner to set the minimum token threshold for

tax collection.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code as a GitHub weblink, and we used all possible tests based

on the given objects. We have observed 3 very low-severity issues. We confirm that all

smart contract issues are fixed. So, the smart contract is ready for mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://github.com/Otcomgit/OTCOMToken/blob/main/OTCOMToken.sol

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Otcom Token

Slither Results Log
Slither Log >> OTCOMToken.sol

INFO:Detectors:
OTCOMToken.constructor(address)._devWallet (OTCOMToken.sol#311) lacks a zero-check on :

- devWallet = _devWallet (OTCOMToken.sol#326)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in OTCOMToken.swapAndLiquify() (OTCOMToken.sol#628-654):

External calls:
- swapTokensForEth(tokensToSwap) (OTCOMToken.sol#638)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,pat
h,address(this),block.timestamp) (OTCOMToken.sol#609-615)

- (success1,None) = devWallet.call{gas: 35000,value: devAmount}()
(OTCOMToken.sol#647)

- addLiquidity(otherLiqHalf,newBalance) (OTCOMToken.sol#650)
- uniswapV2Router.addLiquidityETH{value:

ethAmount}(address(this),tokenAmount,0,0,address(this),block.timestamp)
(OTCOMToken.sol#670-677)

External calls sending eth:
- (success1,None) = devWallet.call{gas: 35000,value: devAmount}()

(OTCOMToken.sol#647)
- addLiquidity(otherLiqHalf,newBalance) (OTCOMToken.sol#650)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,address(this),block.timestamp)
(OTCOMToken.sol#670-677)

State variables written after the call(s):
- addLiquidity(otherLiqHalf,newBalance) (OTCOMToken.sol#650)

- _allowances[sender][spender] = amount (OTCOMToken.sol#477)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
OTCOMToken.swapAndLiquify() (OTCOMToken.sol#628-654) tries to limit the gas of an external
call that controls implicit decoding

(success1,None) = devWallet.call{gas: 35000,value: devAmount}() (OTCOMToken.sol#647)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#return-bomb
INFO:Detectors:
Pragma version0.8.26 (OTCOMToken.sol#11) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.26 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in OTCOMToken.swapAndLiquify() (OTCOMToken.sol#628-654):

- (success1,None) = devWallet.call{gas: 35000,value: devAmount}()
(OTCOMToken.sol#647)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
OTCOMToken (OTCOMToken.sol#267-751) should inherit from IERC20
(OTCOMToken.sol#116-191)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-inheritance
INFO:Detectors:
Parameter OTCOMToken.setTaxPercentage(uint256)._taxPercentage (OTCOMToken.sol#557) is
not in mixedCase
Parameter OTCOMToken.setTaxThreshold(uint256)._threshold (OTCOMToken.sol#576) is not in
mixedCase
Constant OTCOMToken._name (OTCOMToken.sol#269) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant OTCOMToken._symbol (OTCOMToken.sol#270) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant OTCOMToken._decimals (OTCOMToken.sol#271) is not in
UPPER_CASE_WITH_UNDERSCORES
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
OTCOMToken.setTaxPercentage(uint256) (OTCOMToken.sol#557-566) uses literals with too
many digits:

- require(bool,string)(_taxPercentage <= 100000,Tax percentage cannot exceed 100%)
(OTCOMToken.sol#558)
OTCOMToken._calculateTax(uint256,uint256) (OTCOMToken.sol#736-738) uses literals with too
many digits:

- amount * (_taxPercentage) / (100000) (OTCOMToken.sol#737)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
OTCOMToken.devTaxShare (OTCOMToken.sol#284) should be constant
OTCOMToken.liquidityTaxShare (OTCOMToken.sol#283) should be constant
OTCOMToken.swapEnabled (OTCOMToken.sol#291) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:OTCOMToken.sol analyzed (7 contracts with 93 detectors), 29 result(s) found

Solidity Static Analysis
OTCOMToken.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 721:25:

Gas costs:
Gas requirement of function OTOMToken.burn is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 407:37:

Gas costs:
Gas requirement of function OTOMToken.setNumberOfBlocksForBlacklist is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 579:25:

Gas costs:
Gas requirement of function OTOMToken.setDevWallet is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 607:38:

Similar variable names:
OTOMToken._burn(address,uint256) : Variables have very similar names "account" and "amount".
Note: Modifiers are currently not considered by this static analysis.
Pos: 427:12:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 636:2:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 793:512:

Solhint Linter

OTCOMToken.sol

Compiler version 0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:12
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:57
Error message for require is too long
Pos: 9:99
Function name must be in mixedCase
Pos: 5:202
Constant name must be in capitalized SNAKE_CASE
Pos: 5:272
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:315
Error message for require is too long
Pos: 9:316
Error message for require is too long
Pos: 9:592
Avoid making time-based decisions in your business logic
Pos: 13:649
Error message for require is too long
Pos: 9:726
Error message for require is too long
Pos: 17:766
Code contains empty blocks
Pos: 32:791

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

